REVIEW of the AUSTRALIAN BLIND SNAKES
 (Family Typhlopidae),
 By Eidgar R. Waite, F.L.S., Director S.A. Musfum.

Plate i: Charts 1-9; Text figs. 1-24.
In one of my earlier papers on the Typhlopidae I intimated my intention of writing on the distribution of the Family in Australia. This project had to be abandoned on my learing Sydney for New Zealand: on returning to Australia, however, the study was resumed, and this "Review" is the outcome.

In order to render the result as complete and satisfactory as possible, I have examined the collections preserved in all the principal Museums of the Commonwealth, and for this privilege I desire to express my cordial thanks to the governing bodies and curators of the following institutions, namely:

Queensland Museum, Brisbane. National Museum, Melbourne.
Australian Museum, Sydney.
Western Australian Museum, Perth.
Macleay Museum, Sydney.
The material in our own Museum was, of course, also examined, the total number of specimens studied being $5 t ?$.

The paper deals critically only with Australian species, but a list of those recorded from the Australian Region, outside the Commonwealth, is iurnished as a separate paper.

Habits. The Blind Snakes, or Worm Snakes, as they are also not inaptly called, are widely distributed in tropical and subtropical lands. They are absolutely harmless to man and occur ahmost throughout Australia, being found even in the dry and arid deserts of the interior. They live underground, in termite mounds, or beneath rotting or termite-riddled logs: also in old saw-dust heaps; they feed largely upon termites or "white ants," also on small worms, the grubs of beetles and on small insects, their eggs, larvae and pupae. Many of them, if not all, emit an objectionable odour when handled or otherwise disturbed, and this faculty may be a protection against enemies, or may provide the means whereby the sexes find each other.

Though it may be presumed that hind snakes cast their skins, I have not seen any indication of sloughing in these reptiles; this may be accounted for on the supposition that the skin is shed underground.

I have before me a live example of T. bituberoulatus, the most widely distributed and the commonest species in South . Iustralia; placed in a box containing sand it quickly burrows by means of its sharp-edged snout, which is rapidly moved from side to side so as to displace the sand in its passage. This action may also be presupposed in the case of other species having a cunting-edged snout. as. for example, T. atstralis; but blunt-snouted species such as T. broomi and T. lifatus must burrow in differem manner or into soil of different character. presmming that they do actually burrow: while one may fruitlessly speculate as to the use of the extraordinary beak-like snout of T. yrypus. During progression the tail is curved downwards so as to provide a point dappui, the thorn-like spine at its tip greatly assisting its action. Though I have handled scores of specimens of different species none has ever assumed the position deceribed or illustrated by McCoy: (1) Placed upside down upon a table the snake quickly. rights itself, the use of the caudal spine being then very evident. Held in the hand, the pressure of the snout as the snake tries to drive itself through the flesh is surprising, and when applied to the fissure between the closerl fingers its efforts can scarcely be resisted : at the same time the application of the caudal thorn against the skin is quite pronomnced. It also has considerable constricting powers, and can wind itself tightly round the fingers.

Settling down below the sand the snake may coil itself into a close compact mass, and when discovered in nature, in dommant condition, these reptiles are usually found so coiled. When above gromed the blind snakes are so evidently ill at ease that they are in constant movement, endeavouring to burrow. and it is thus difficult to photograph them in life: by placing them on a sanded board. however, they are prevented from burowing while a natural appearance is maintained. The three photographs on Plate 1 are all of the same specimen, and in all the head is directed towards the left hand.

During the course of its wanderings on the table the snake will sometimes tie itself into a knot by passing its head through a loop of its own body \& Pl. I. fig. 2) ; it is not untied by reverse action, but by continuing the motion, so that the knot is passed backwards along the whole length of the borly, when the tail finally emerges from the coil and the knot is tudone.

Appearance. Excepting as regarls size and comparative proportions. all Australian species are of very similar appearance. having cylindrical bodies of fairly uniform thickness throughout, or somewhat thickened towards the tail, the diameter of which may lee greater than that of any other part. The tail terminates abruptly, but in all our species actually ends in a fixed thorn-like point to which the rows of scales converge, and of which it forms a common termina-

[^0]tion: it is usually inclined towards the ground and its function is to assist in the progression of the suake when burrowing. In certan examples of some species. notably T. polyrammicus. there is a dark brown or black bloteh on each sile of the short tail near the rent. Seeing that the eyes are almost indistinguishable and the dark blotehe often conspicuous, the tails of these snakes are often mistaken for their hearls, whilst some people believe that blind snakes have a head at each end: double-headed snakes are occasionally produced. but such a condition is quite analagous to that of the more familiar chouble-headed calf.

Scales. The scales werlap and are closely adpressen, broader than long, sub)equal in size and highly polishet, so that little resistance is offered in the passage of the snake through the soil. There are no ventral plates, as with the majority of snakes, the scales on the belly being indistinguishahle from those elsewhere: the rows of body scales are so uniformly disponed that their number, normally in an

Fis. 1. Tail and hinder portion of body of T. polygrammicus even series, provides a reliable diagnostic character. ()wing to their small size and highly-polished surface it is sometimes rlifficult to count in how many rows the scales are disposed: the process is facilitated by sticking into the body at sifferent parts of the circumference two or perhaps three small entomological pins and connting from pin to pin. when the body may be rotated to include the next pin. I watchmaker's glass used in the eye not only enlarges the apparent size of the scales, but allow: both hands free for turning the body of the snake.

Head. The sliameter of the hearl is usually less than that of the borly into Which it emerges without definite constriction or neck; it is covered with enlarged plates, arranged in definite and regular order, but their shape and relative size may differ in the varions species. in the determination of which their conformation is utilized.

The arrangement of the head shields differs from that found in the majority of snakes, inasmuch as no two seales form a suture on the mid line, either above or below: The following illustration shows the general arrangement of the shields, and the names by which they are known.

The eyes are rudimentary, but show with greater or less clearness throngh the ocular scales: it is probable that the visual sensations of the blind snakes are little more than a perception of the difference between darkness and light (the name Typhlops is from ruphos blind, wit eye). The mouth is small, crescent-

Fig. 2. Terminology of head shields.
shaped. placed wholly on the underside of the head; the teeth are few in number and are confined to the upper jaw, being placed on the maxilla, transversely to the axis of the skull, the tongue is forked and white or pink in colour.

Colour. The different species of blind snakes are generally very similar in colour, being purplish-grey above and flesh-coloured below, the two tints often sharply defined: after preservation in fluid, the colours become leaden above and yellow below. Some of the North Australian species have one or both extremities black; this, and other departures from the usual colouration, will be referred to later.

Reproduction. It is known that some species lay eggs, doubtless all do so: the eggs are of comparatively large size. The sexes cannot be determined without dissection : different examples of the same species sometimes show rariation in the respective length of the tail. where such exists the longer tail is generally indicative of the male.

Anatomy. The skull is simpler than in wther snakes, having fewer distinct bones, and these solidly united. The skulls of very few species of the Family have been dencribed, and it is more than probable that if those of our blind snakes were examined, considerable differences would be detected. So far I have dissected one species only, namely, T australis, but the shape and proportional size of the cranial bones differ so much from the illustration of those of T. lumbricalis (2) and T. reticulatus (3) that a tempting subject of research is indicated.

The skin of the snout is closely applied to the bone, and as considerable variation exists in the contour of the head in the different species, the skull will certainly be found to be similarly modified.

Very little original work has been done on the osteology of the Typhlopidae.

[^1]and mistakes made in leading textbooks have been, and will continue to be, perpetuated. Gadow (4) states that: "The pterygoids and maxillaries, connected by the ectopterygoids, are absent, owing to reduction in the Typhlopidae." Seeing that both pterygoids and maxillaries are present, this statement is inexplicable. Parker and Haswell (5) write: "The Typhlopidae differ from the rest of the Ophidia in having the maxillae immobile," and so on.

All writers agree, however, that there is no ectopterygoid in the skull of members of the Typhlopidae, and had we not the assurance of Huxley, Boulenger and other original insestigators, I should probably have thought otherwise. I am unaware that any Australian species has been previously examined, and it may be that some of our forms. including T. australis, the species now in quention. may show some divergence in regard to their cranial features. It is not, at least

Fig. 3. Skull of T. australis.

a. articular	m. maxillary				
bo. basioccipital	n. nasal				
bs. basisphenoid	p. parietal				
c. coronoid	pf. prefrontal				
d. dentary	pm. premaxillary				
ec. ?ectopterygord	po prootic				
ex. exoccipital	pt. pterygoid				
f. frontal	q. quadrate				
s. supraoccipital					

at present, my purpose to deeply consider osteological characters, but I should like to draw attention to the method of articulation of the pterygoid as found in T. australis. This slender bone is not connected directly with the movable
(4) Gadow, Cambridge Nat. Hist. viii. 1901, p. 581.
(5) Parker and Haswell, Text-book of Zool. ii. 1910, p. 349.
maxilla, but by means of its forked proximal end it articulate with a small transverse bone which connects the free portion of the maxilla with the palatine. If this transersely placed bone, marked "ec" in the accompanying diagran, is not homologons with the ectopteryguid of less degraded forms of ophidia, is it to be regarded as a detached, though sutured. portion of the outer extremity of the palatine, or should it be referred to some other bone?

The pelvis is represented by a single small bone on each side. The arrangement of the soft parts generally conforms to the conditions found in other snakes, in which, however, there is considerable diversity, not only in the character and position of the lungs. but in their number also: some suakes bave two. one of which, in the majority of forms, is more or less rudimentary, whilst others have but a single lung: the blind snakes have only one true lung: it is placed on the right sicle and extends from the heart to the liver. Inother organ, the socalled tracheal lung, regarded by some as the vestige of a once functional lung. is without cavity, is composed of cells of different sizes, and appear to have no commmication with the trachea or lung. It has been suggested that this structure may not be a pulmonary organ.

Illustrations. ()wing to the rommlness of the bodies of these snakes it is not possible, from a fixed point, to see quite half the diameter: it was from such view-point that my former drawings were made, the result being that, as regards their upper and lower aspects, the point of contact of the head scales with the margin dues not coincide. The new drawings accompanying this paper are slightly more diagrammatic, inasmuch as the view is supposed to subtend exactly half the diameter of the snake, so that the unsatisfactory condition referred to is thereby remedied. All the drawings are larger than life, but are not to the same relative scale. With one exception, namely, that of T. witii, all the admitted species are illustrated, the drawings being prepared under my personal supervision by my assistant, Mr. Herbert M. Hale, to whom I here express my thanks.

Terms used. In describing the head of a snake, or indeed parts of other animals, two distinct contours often require to be defined, namely (a) that seen from the side, and (b) that seen from above or below. The words "view" or "aspect" may be used in explanation of an illustration, lut cannot well be applied in descriptions where the external contour alone is to be expressed.

In describing the outline of an object as seen from the side, we have the simple and exact word "profile," but there is, as far as I know, no single worl to expres the outline as seen from above or below.

It is really the lateral contour that is sought to be defined, but the use of the word "lateral" at once suggests a side view or profile; then the employment

Chart 1. Distribution of \bullet T. proximus.
of the expressions "dorsal profile" or "rentral profile" certainly indicates the upper or lower contours respectively, as seen in profile.

Following custom, the use of the term "heal," though admittedly inexact, is hereafter employed to express the lateral contour of the head, while the word "snout" similarly denotes the contour as seen in profile; the mouth, being undershot, merely completes the lower profile.

Synopsis. In 1s9.3, Boulenger ((i) catalogned the Typflopidae of the world, and it will be conceded that the preparation of a synoptical key of such numerous and generally similar forms presents great difficulties. This difficulty is enhanced when but littie material or descriptions only are available, and, in practice, it is found that by the aid of sucin key alone, the determination of some species is very difficult and unsatisfactory, especially when some of the main divisions, or at any rate subdivisions, are based upon relatise and, what prove to be inconstant, characters, to be discovered only when ample material for comparison is available.
(6) Boulenger, Cat Snakes, Brit Mus. i. I893.

Dealing with a much smaller number of species, it becomes possible to devise a more satisfactory synopsis, and that here submitted, together with the illustrations. should enable anyone, after a little study and experience, to identify specimens obtained. In closely altied forms where it is thought that the key may not be sufficiently explicit, some note on identification will be found appended to the description of the species involved. A young Typhlops from Champion Bay, North-IVest Iustralia, has been associated with T. olizaceus, but as the type of that species is from the Philippines, further evidence is desirable before admitting it as a member of the Australian fauna. The description of T. a'aitii is insufficient to enable me to deal satisfactorily with this species, and not possessing specimens I am unable to supply an illustration.

Confining attention to Australian species and seeking for absolute ratiser than relative differences, it is found that the cleft which proceeds downwards from the nostril provides a constant and therefore reliable character. This, the nasal cleft, runs in the majority of species to either (a) the first, or (b) the

Chart 2. Distribution of - T. polygrammicus.

Chart 3. Distribution of - T. broomi, O T. gitentheri, \perp T. ligeths.
second labial, and two main divisions may therefore be recognized. I third main division is formed for those species in which the cleft does not run directly to either the first or second lahial, but first makes contact with (C) the preocular shield. The following illustrations show the three conditions here emplasized.

Fig. 4
T proximus.
Nasal cleft to first labial

Fig. 5.
7 labialis
Nasal clett to second lahal

Fig. 1.
7. cmatorns

Nasal cleft to the preocular

In most cases the characters indicated can be ascertained only by careful examination with the aid of a magnifying glass. The number of rows of scales round the body is very constant in Australian species. and forms a reliable secondary division under each main group: the range in the number of rows varies from is to 24 , and they are, normally, always in an even series. Examples are very occasionally found wherein this is departed from; in such, however, it will be found that some of the scales in one or more rows have been split, fused with others, or that some other abormality exists: the scales bordering the head shields are rather subject to such irregularities.

Specific characters. The lateral contour of the head, as viewed from above, is usually rounded, but it may be blunt as in T. broomi, sub-acute as in T. batillus, or markedly trilobed, a condition found only in T. bituberculatus. The profile is also generally rounded, but provides varying degrees of angularity, T. kenti furnishing the extreme instance, in which species the snout is acntely angular: in T. grypus the smout forms a distinct hook, like the beak of a cockatoo.

Chart 4. Distribution of - T. torresiamus, o T. diverstes, \perp T. affinis.

Chart 5. Distribution of \bullet. pinguis, ○ T. grypus, \perp. enioterus.
The rostral shield extends from or nearly from the level of the eyes to above to the mouth below, of which it forms the anterior border; it varies greatly in shape, as will be seen by consulting the illustrations, and as regards size may be but a narrow band, as in T. ligotus, or fully half the width of the head as in T. australis. The nasals (and following shields) do not reach the mouth; it is their extreme tumidity in T. bituberculatus that produces the condition already referred to in this species. The nostril, situated in the nasal, is ummistakally inferior in the species named; in most others it occupies a sublateral position; in one only, namely. T. labialis, is it truly lateral, appearing on both upper and lower aspects. The nostril may lie close to the rostral, as in T. affinis, or be removed considerably therefrom as in T. polygrammicus. In T. cudoterus the cleft is arrested at the nostril ; in several species, as in T. broomi, it divides the nasal: whilst in T. torresianus, instancing an extreme case, it is projected far on to the upper surface of the head. The preocular is present in all Australian species, and in contact with the second and third labials; in all excepting T. labialis it is narrower than

Chat 6．Distribution of－T．wiedii．
the ocular：the last－mamed similarly makes contact with the third and fourth labials．Four npper labials are present in all tnetralian species：they are ushally longer than broat．T．laboblis proviting a noticeable exception．There are mo distinct lower labials，the margin of the jat being formed by the atherion borly scales．

Size．Vomg examples are msally wigreater relative thickness that the arlults，and the latter often exhibit comsiderable variation in this respect．Some species apparently remain small，others attain to consiclerable length，thas T ． polvyrammicus grows to ファフ 1 mm．T．grypus in an extramely slender form．its length may le 122 times its diameter．T ．pinguis is，on the other hand，very stout，the length of the type being but 22 times its diameter．

Distribution．＇Wre knowledge of the gengraphacal distribution of the blind shakes is affersely affected by several conditions：on ing to their minally small ize．sulderranean babits，their superticial resemblance to worms，and the slight interest they evoke．comparatively few specimens are taken：nearly all
known examples are from settled areas; fewer specimens are naturally meathed in remote districts, and. owing to lack of prome facilifics. fewer still are preacried.

If is unfortumate also that precise localities are not always abaibable; in carlier days "N゙e Ifolland" was comsidered to be sufficiently exact, providing. as it did, a hablotat distinct from India. (hina or . Ifrica. Collectors operating over wide areas are apt to lose labels, camel transit being notorionsly bad, and the name of the State, saly, "Western Australia," whose borders extend a distance equal to that separating London and Norocen, may be the only indication of the locality of a specimen. Then, again, the seaport of a state may stand for an inland locality, ats in l'cters record of "Meiburn," for T. bicolor (F. anstralis). Thongh, as elsewhere mentioned, the examples preserved in all the Justralian Ausemms have been criticatly examined for the purposes of this paper. quite a large proportion of the specimens are imperfectly localized, and canon, therefore. be used in assigning the exact range of the species.

Chart 7. Distribution of - T. bituberculatus.

The accompanying charts represent our present knowledge of the range of the several species inchuded. The position marks, taken individually, do not represent areas of occurrence, but express definite localities, though in Metropelitan districts a single mark may stand for and cover several adjacent productive localities, as, for example, those marking the occurrences of 7 . austrulis in the neighbourhoorl of Adelaide. Such "locality" as North-W"entern Australia,

Chart 8. Distribution of - T. australis.
representing, say, a single occurrence, though readily expressed in words, cannot lee conveniently charted; in such casen position marks are omitted, though the reference is recorded in the text. The habitat of two species, T. araitii and T. lubialis, is indefinite, and these do not therefore appear on the charts.

Though the available data is very incomplete, some useful conclusions may be made therefrom. T. polygrammicus and T. protimus occur in Quecnsland, New South Wales, and Victoria. T. bituberculatus and T. australis are found throughout the southern half of the Continent : T. pinguis is also a southern.
though less extensively distributed, pecies. T. avicdii occurs in Western Sustralia and the Eastern States. T. diatersus. T. grypus, T. gucutheri. T. kenti, and T. aditii are generally morthem forms. T. torresianus is from the coast of Oucensland, T. cudoterns from the middle of the Continent, T. batillus from New South Wales, and its ally, T. labialis, from Western Anstralia, without precise locality. The range of T. broomi is peculiar, examples being known only

Chart 9. Distribution of - T. kenti, ○ T. unguirostris, \perp T. batillus.
from four widely separated localities, the exact positions being shown on Chart Nก. 3.

It was hoped that a study of the range of the blind snakes would reveal some conformity to the zoological areas as mapled out by various writers, but the result is not convincing.

In point of numbers T. bituberculutus is the commonest Australian species it is followed by T. polygrammicus, T. australis, T. prosimus, and T. wicdii, all of which appear to be plentiful in the respective areas in which they occur.

a. Nasal cleft in contact with the first labial
b. Is scales round the body 1 grypus
hb. 20 scales round the body 2 proximus
bbh. 2. scales round the body 3 polygrammicus:
blbb. - - scales rombl the body
c. rostral nearly as broad as long + thignirostris
cc. rostral a narrow band 5 ligatus
aa. Nasal cleft in contact with the second labial
d. In scales round the body
e. snout angular, nasal divided
f. rostral produced in front, snout very acute okenti
ff. rostral not produced T affillis
ee. snout rounded, nasal not divided ... 8 gluentheri
dd. 20 scales round the body
g. head rounded
h. body stout 9 pinguis
hh. body slender
i. nasal completely divided ... 10 broomi
ii. nasal not completely divided ... 11 wiedtii
gg. head trilobed 12 bituberculatus
ddd. 22 scales round the body
i. nasal cleft produced on to the upper part of the head 13 torresiamus
ji. nasal cleft not produced on to the upper part of the head
k. 1t australis
kik. (see note under the species) ... 15 wataii
dddd. It scales round the body

1. preocular narrower than the ochar $\quad . .16$ batillus
2. preocular wider than the ocular 17 labialis
aaa. Nasal cleft in contact with the preocular
iil. 2) scales round the body 18 dizersus
mim. 22 scales round the body 19 cutoterus
t7) [ondenger has identified with $\%$, olizacess (iras, from the Philippines, a vonns specimen taken at © hampion Bats. © W . Instraliat

Family TYPHLOPIDAE.

Cranial bones solidly united: (no ectopterygoid-transpalatine, see p. 6); pterygoid not extending to the quadrate or the mandible: no supratemporal (squamosal): prefrontal forming a suture with the nasal; maxillary loosely attacherl, movable: with a few teeth disposed transversely to the axis of the skull: no teeth on the palate or mandible; coronoid bone present; vestiges of pelvis, reduced to a single bone on each side. Body covered with uniform cycloid scales; eyes beneath the transhucent ocular shields. Tail short, ending in a thorn: Oviparous.
(The family includes the genera Helminthophis. Typhlopis and Typhlops. The last-named only occurs in . Iustralia.)

TYPHLOPS Schneider.

Typhlops (in part.) Schneid. Hist. Imphib, ii, s. Sor, p. 339.
Typhlops Oppel, Ordnung. Rept. ISIB. 1. 5t (Iumbricalis). (For synonomy see Boulenger. Cat. Snakes Brit. Mus, i. 1803, p. 7, and Stejneger, liull. U.S. Nat. Mus. 58, 1907, 1, 260).
Ranye. South-Eastern Europe, South Isia, South Ifrica, Inter-tropical Imerica. Australia and Iolynesia; not found in Tasmania or New Zealand.

TYPHLOPS GRYPUS sp. nov.

Chart No. 5 and fig. 7.

Nasal cleft to first labial: scales in tif rows.
Head sub-acute. much produced; snout rery prominent, strongly hooked, the extreme tip recurved, forming a distinct beak; nostrils inferior, the cleft close to the rostral which it touches in front of the nostril, dividing the nasal:

Fig. 7. Head of T. grypus.
rostral slightly more than half the wirth of the hearl, widest in its front half, reaching to the level of the eyes, the lower part much broader than long : preocular
very narrow, only half of the width of the nasal: diameter of horly 63 to 122 times in its length.

Colours. Ivory, tinged with brown above, beak yellow, heat, foreneck and tail brown, the last black in some specimens.

Length. 335 mm ., longest scen fo 5 mm .
Type. In the National Musenm, Mellourne, No. R. 71oz. Specimens abso in the Queensland and South Au-tralian Museums.

Range. ()f the four examples known, one is from Marble Bar, NorthWestern Australia, and a second from Giregory Downs. (Vucensland; the localities of the other two are unknown.

Remarks. This extraordinary snake exbibits some characters of T. kenti, but differs from that species in having the nasal cleft in contact with the first labial, and its consequent contiguity to the rostral, by the ctrongly hooked beak, and in having the rostral below broader than long.

TYPHLOPS PROXIMUS Waite.

 and Australian Snakes, i\&oR, pl. i. Bouleng. Cat. Snakes Brit. Mus. iii, 1896, p. 588. Lönnb. and Anders. Vet. Akad. Handl. Lii, 1915, p. 7. Typhlops nigrescens Mc(oy, Prod. Kool. Vict. dec. xi, 1885, pl. Ioz (not Cray). Chart No. I and fig. 8.
Nasal cleft to first labial; scales in 20 rows.
Head somewhat produced, tumid at the nasals: shout prominent, obtusely angular; mostrils inferior, the cleft a little nearer to the rostral than to the

Fig. s. Head of T. proximus
preocular. extending well on to the upper surface; rostral markedly swollen. more than half the width of the head, reaching to, or nearly to, the level of the eyes, the lower part ats broad as long. Diameter of borly 25 to fo times in its length.

Colours. ()ccasional examples show indication of a dark mark on each side of the vent. as in T. polyoframmicus.

Lenlyth. 700 mm .
Type. In the Anstralian Musemm, Sydney. No. $0+11$.
Range. Qucensland, soththard from Lat. 17 deg. 5 min. S. Common in New South Wales and Northern Victoria.

Remarks. Under the name "T. nigrescons" MeCoy writes of this species: "These specimens were dug out of an ant-hill in which they dwelt in the midst of the abundant insect food suited to them." Lönnberg and Andersson remark of a specimen taken at Malanda, near Cairns, that it "lives below rotten stumps in the jungle."

TYPHLOPS POLYGRAMMICUS SchlegeI.

Typhops polygrammicus Schleg. Ibbild. Imphib. I8+4. p. fo. pl. xxxii, figs. 35-38. Dum. et Bib. Erpét. Gén. vi. 184t, p. 302. Jan. Icon. Gén. 1864, p. 13. liv. 3. pls. iv and v. Fig. 15. Peters, Mon, Akad. Berl. 1865, p. 262. Bouleng. Cat. Snakes. Brit. Mus. i, i893. p. 34. and iii, 1896. p. 586 . Waite, Proc. Limn. Soc.. N.S. Wales (2), ix, 1894, p. 13.
Anilios nigrescens Gray, Cat. Lizards Brit. Mus., 18+5.1). 135.
Aryyrophis polygrammicus Gray, loc. cit. p. 13^{8}.
Typhlops nigrescens Jan, op. cit. p. Iz. liv. o. pl. i, fig 1. Waite, Rec. Aust. Mus. ii, 1893, pl. xv, figs, 1, 2, 5.
Typhlops ruppelli Jan, op. cit. p. It. liv. 14. pl. i, fig. 2. Waite, Rec. Aust. Mus. loc. cit. p. 59. pl. xt. fig. 6 (tail).
Typhlops tcmminckii Jan, op. cit. p. 14, liv. 3, pl. iii and iv, fig. 6. Bouleng. op. cit. i. 1893. p. 29.

Fis. 9. Head of T. polygrammicus
Typhlops reyinue Bouleng. Amn. Mag. Nat. Hist. (6), iv, thige, is. 3()2, and Cat. Snakes, Brit. Mus, i, 1893. 1. 35. pl. iii, fig. I.

$$
\text { Chart No. } 2 \text { and fig. } 9 .
$$

Nasal cleft to first labial: scales in 22 rows.

Head rounded; snout romaded; mostrils inferior, the cleft median, extending on to the upper surface: rostral nearly half the width of the head, reaching nearly to the level of the eyes or mot so far, the lower part a little longer than broad: diameter of borly 30 to 59 times in its length.

Colours. A brown or black bloteh is frequently present on each side of the tail, above and behind the vent.

Lchyth. 757 minl.
Type. In the Leyalen Musemun, from Timor.
Ranye. Queensland, common in New South Wales and \ictoria.
Remurks. The type of T. polyyrammicus was taken in Timor. I am not fully satisfied that Iustralian examples are of the same sjecies, if otherwise the name T. niyrcsccus should be used. Our specimens from Queensland are, with one excepuion, unlocalized, and their geographical position camot therefore be charted. The characters assigned to 7 . reginac come well within the variations to which our examples are subject.

TYPHLOPS UNGUIROSTRIS Peters.

Typhops (Onychocephalus) mynurostris l'eters. Mon. Akad. Berl. 18(7, p. 7os. fig. 3 .
Typhlops curzirostris 1'eters, op, cit. 1879. p. 726. fig. 5. Bouleng. Cat. Sinakes, Brit. Mus. i, 1803 , p. 48.
Typhlops unguirostris louleng. (in part), op, cit, p. 49 and (cmend.), iii, 1896.
 Limn. Soc. N.S. Wales (2), ix. $18(9)+$ p. 11.

$$
\text { Chart No. y and fig. } 10 .
$$

Nasal cleft to first labial : scales in $2+$ rows.
Head long, narrowed in front : snout very acutc, the lower edge sub-horizontal : nostrils inferior, the cleft nearer to the rostral than to the preocular, pro-

Fig. 10. Head of T. unguirostris
duced slightly beyond the nostril, but not dividing the nasal: rostral half the width of the head, projecting and marrowed in front, not reaching to the level of the eyes, the lower part a little longer than broad. contracted between the mostrils ; diameter of body +2 ton , times in its length.

Lochyth. Goomm.
Type. In the Berlin Musemm, from Rockhamptom, Queensland.
Range. Specimens examined from the lype locality and Darwin, Northern Territory: examples labelled Mallce. Victoria, and Lyndoch Valley, Sonth Australia, are indistinguishable from the northern forms

Remarks. It is to be noted that the description in the British Museum Catalogue (i, p. $\ddagger 4$), under the name T. unyuirostris, is a composite one and is ementerl in a succeeding volume (iii. p. Six)).

TYPHLOPS LIGATUS Peters.

Typhlops ligatus l'eters. Mon. . \kad. Berl. 1879, 1. 775. fig. 3. Naite, Rec. Just.
Mus. ii, I893. 1). 57. Bouleng. (at. Snakes Brit. Mus. i, 189)3. 1). 34.
Typhops curtus ()gilby, Rec. . Iust. Nus, ii, sionz, p. 23
Chart No. 3 and fig. I 1.
Nasal cleft to first labial : scales in 27 rows.
Head rounded; snout evenly and bluntly rounded; nostrils inferior, the cleft median, produced beyond the nostril far on to the mpper surface of the snout. nearly dividing the nasal: rostral very narrow, forming a band at least twice as

Fig. 11. Head of T. ligatus
long as broad, a fourth, more or less, the with of the head, reaching to the level of the eyes, the lower part also longer than broad : diameter of body 23 to 37 times in its length.
longth. tis5 mm.
Type. In the Berlin Mlusenm, from Mackay, ()ueensland.
Range. Queensland. New South IVales. Victoria.
Remarks. The rostral is narrower than in any other Australian species.

TYPHLOPS KENTI Boulenger.

Typhlops kenti Bouleng.. Inn. Mag. Nat. Hist. (8), Niv, 191+. 1). +82.
Chart No. 9 and fig. 12.
Nasal cleft to second labial ; scales in 18 rows.
Head greatly produced. sub-acute; snout acute, with lower edge horizontal; nostrils inferior, the cleft nearer to the preocular than to the rostral which it touches in front of the nostril, dividing the nasal: rostral a little more than half

Fig. 12. Head of T. kcuti
the width of the head. widest in its front half, extending to the level of the eyes, the lower part as broad as long, preocular narrower than the nasal or the ocular : diameter of body 55 to 102 times in its length.

Colours. Pale brown above, yellow beneath; in three sjecimens the tail is hlack, in one other the head is also black.

Lcngth. 275 mmm .
Type. In the British Museum, from Northern Queensland.
Kange. Four specimens examined, one each from King's Sound and Broome. Kimberley Division, and Vanyereddy Station, near Ishburton River, NorthWestern . Iustralia: one from "We ${ }^{\text {Wern }}$. Australia."

Remarks. I note on the differences between T. kenti and T. grypus will be found under the entry of the latter species.

TYPHLOPS AFFINIS Boulenger.

Typhlops affinis Bouleng.. Inn. Mag. Nat. Hist. (6) ir, sא8), p. 3(3. Cat. Snakes Brit. Mus, i, IRy3. 1' +9, pl. iii, fig. 3. and J'roc. Limn. Soc. N.s. Wales. (2) in, 18 ght. 1. 74 Waite. Proc. Limm. Soc. N.S. Wales, (2) ix, 1894 . 1. 11 .

Chart No. + and fig. 13 .
Nasal cleft to seconcl labial: scales in 18 rows.

Head blunt: snont olntusely angular, lower edge sub-horizontal: nostrils inferior, the cleft a little nearer to the rostral than to the preocular, produced to the rostral, dividing the masal; rostral slightly more than half the width of the head, contracted behind, reaching to the level of the eyes, the lower part much broader than long; diameter of body for to 57 times in its length.
S.cngifth. 206 mm.

Trpe. In the British Museum, from Queensland.

Fig. 13. Head of T. affinis.
Range. The three examples examined are labelled respectively: "North Queensland," "Fidsvold, nr. Gayndah, Queensland." and "Campbelltown, New South Wales." Lönnberg and Andersson identified a specimen from Mallallah, interior of Kimberley, North-west . Australia, found in the interior of a termites' hill.

Remarks. The original description of this species is unsatisfactory, being mainly comparative: the diagnosis of T. unguirostris, with which species it was compared, was afterwards found to include two species. T. affinis is intermedius between T. yuentheri and T. kenti, differing from the former in its completely divided nasal, angular snout and heart-shaped rostral, and from the latter in its blunt head, with less prodnced rostral and less acute snont. All three species are of slender habit with small heads.

TYPHLOPS GUENTHERI Peters.

Trphlops (Onychoceplahus) gucutheri Peters, Mon. Akad. Ber]. 1865. p. 259, fig. 1. Bouleng. Cat. Snakes, Brit. Mus. i, 1893. p. 20.
Typhlops nigricauda Botsleng. I'roc. Zool. Soc. 1895. p. 867, pl, xlix, fig. I, and Cat. Snakes. Prit. Mus. iii, 1896. p. 586.

Chart No. 3 and fig. 14.

Nasal cleft to second labial; scales in i8 rows.
Head blunt; snout rounded; nostrils inferior, the cleft median, temmating at the nostril; rostral half, or rather more than half the width of the head,
reaching to the level of the eyes, sides sub-parallel, the lower part broader than long: diameter of borly for to so times in its lengtio.

Fig 14. Head of T gucutheri
Colours. Hearl and tail, brown or black, the colour, especially that on the head. absent in some specimens.
l.ength. 315 mm .

Typc. In the British Mnseum, from North Australia.
Ramye. Known from Daly Kiver (British Musemm), Port Darwin, East Nlligator River, all in the Northern Territory : and Marble Bar, North-western . Instralia.

Remarks. From the other two species of this division with is rows of scales, namely T. affinis and T. kenti, this species may be recognized by the rounded snout, the incompletely divided nasal and the quadrangular-shaped rostral.

TYPHLOPS PINGUIS Waite.

Typhlops pintuis Waite. Trans. Foy. Soc. S. Aust. xxi, 1897. p. 25. pl. iii.

$$
\text { Chart No. } 5 \text { and fig. I5. }
$$

Nasal cleft to second labial : scales in 20 rows.
Head rounded. the nasals slightly tumid: snout obtusely angular: nostrils inferior, median, the cleft produced, but not on to the u!per surface of the head:

Fig. 15. Head of T. pinguis.
rostral about half the width of the head, widest mediatly, extending nearly to the level of the eyes, the lower part broader than long; diameter of body 22 to 32 times in its length.

Length. 485 mm .
Type In the Sonth Iustralian Museum, from South Australia.
Range. The headquarters of the species appears to be the extreme southwestern corner of the Continent, whence I have examined many specimens. One example (the type) is from South Australia and one from the Nallee district of Victoria.

Remarks. The very stont habit is almost characteristic of T. pinguis; from its allies, T. broomi and T. wicdii, it differs also in its large size and angular shout; further, the former has distinct colour stripes and a completely divided nasal, and in the latter the nasal cleft extends on to the upper surface of the snout.

TYPHLOPS BROOMI Boulenger.

Typhlops broomi Bonleng. Ann. Mag. Nat. Hist. (7), ii, i\&) \&, p. +14.
Chart No. 3 and fig. if.
Nasal cleft to second labial ; scales in 20 rows.
Head rounded, snout evenly rounded, very blunt; nostrils inferior; nearer to the rostral than to the preocular, the eleft just visible from above, where it joins the rostral. dividing the nasal; rostral subcircular, a little longer than broad. reaching to the level of the middle of the eyes, the lower part quadrangular. wider than long. I iameter of body 3° to 55 times in its length.

Fig. 16. Head of T. broomi.
Colomrs. Yellow, with eleven reddish-brown streaks on the upper surface.
l.chuth $\quad 102 \mathrm{~mm}$.

Tvpe. In the liritish Musem, from Muldiva, near Cairns. Queensland. Ronge. ()f five specimens examined, one is from Cairns, close to the type
locality; another from "North Queensland" ; one from Broome, Kimberley Division, North-western Australia; another from Norseman, inland from Esperance Bay, Southern-western Australia; and the fifth from the Mallee districts of Victoria.

Remarks. The colour markings are quite characteristic, and the snont is blunter than in any other Iustralian species. The completely divided nasal distinguishes it from T. wiedii.

TYPHLOPS WIEDII Peters.

Typhlops zuiedii Peters, Mon. Akad. Berl. 1867. p. 24. Bonleng. Cat. Snakes,
 p. I3. pl. i, figs. 7-9. Boettg. in Semon, Zool. Forschr. v, 1894. p. 117. Garman, Bull. Mus. Comp. Zool. xxxix, 190ı, p. It.
Typhlops lewcoproctus Bonleng. Amn. Mag. Nat. Hist. (6), iv, 1889, p. 301, and Cat. Snakes, Brit. Mus. i, 1893, p. 20, pl. i, fig. 0.

Chart No. 6 and fig. 17.

Fig. 17. Head of T. wiedii.
Nasal cleft to second labial ; scales in 20 rows.
Head obtuse; shout bluntly rounded: nostrils inferior, sub-median, the cleft produced well on to the upper surface of the head: rostral heart-shaped, about half the width of the head, widest medially, extending to the level of the eyes; the lower part broader than long; diameter of body 33 to 76 times in its length.

Length. 295 mm .
Type. In the Berlin Musemm, from Lisisbane, Queensland.
Ranfe. New (immea, Torres Strait (Murray and Darnley Islands), Queenslaml, New South Wales, Victoria, Northern and South-western parts of Western Australia: not yet known from the Northern Territory or South Iustralia.

TYPHLOPS BITUBERCULATUS Peters.

Onvihocephahus bitubercuhatus l'eters, Mon. Akarl. Berl. 1863. p. 23.3. atud 1867. 1. 7 -8, fig. 4.

Typhops bituberculatus Bonleng. Cat. Suakes, Brit. Mus. i, IRy3. p. fre Wermer, Fauna Südwest-Aust. ii, 1909, p. 256. Waite, Trans. Roy. Soc. S. Aust. xli, 1917. 1). 435 , figs. I-3.

Plate i, chart No. 7, and fig. 18.
Nasal cleft to second labial : scales in 20 rows.

Fig. 18. Head of T. bituberculatus
Ilead trilobed, the rostral and bulging nasals forming the lobes; snout acutely angular, the lower edge sub-horizontal; nostrils inferior, nearer to the rostral than to the preocular, the cleft prodtuced slightly beyond the nostril ; rostral produced in front. half the width of the head, extending nearly to the level of the eyes, the lower part slightly broader than long: diameter of body +2 to δ_{2} times in its length.

Length. 450 mm .
Type. In the Berlin Museum, from A Gelaide, South Australia.
Range. The whole of Australia, the northern parts excepted. the most northern localities being Bundaberg. Queensland: Barrow's Creek, Central Australia. and the Fortescue River, Nestern Australia. It is one of the commonest species, occurring plentifully throughout the southern parts of the Continent.

Remarks.-T. bituberculatus is quite ummistakable, even when young, and is the Australian example best illustrating "inferior" nostrils.

TYPHLOPS TORRESIANUS Boulenger.

Typhlops torrosianus Rouleng. Amm. Mag. Nat. Hist. (6), iv, 1889, p. 3(iz, and Cat. Snakes, Brit. Mus. i, s8()3. p. 34. pl. ii, fig. 4 .

Chart No. 4 and fig. 19.

Nasal cleft to second labial : scales in 22 rows.
Head rounded; snout rounded; nostrils inferior, the cleft a little nearer to the rostral than to the preocular, produced far on to the upper surface of the head; rostral narrow. one-third the width of the head, extending almost to the level of the eyes; the lower part as broad as long: diameter of body $3+$ to +3 times in its length.

Fig. 19. Head of T. torresiamus.
Length. foo mm.
Type. In the British Musemm, from Murray Island, Torres Strait,
Range. Torres Strait, east coast of Queensland, Dunk Island.
Remarks. This species differs from T. australis by its rounded snout and narrow rostral, and the condition of the nasal cleft which is projected far on to the upper part of the head. Boulenger states that the portion of the rostral visible from below is "half as broad as long" : nome of our specimens exhibits this proportion, nor indeed does the original figure agree with the description in this respect.

TYPHLOPS AUSTRALIS Gray.

Anilios australis Gray. Cat. Lizards, Brit. Mus. 1845. p. 135.
Typhlops preissi Jan, 1con. Gén. 1860, p. 15, lix. 1, pl. v, fig. 2.
Onychoceplalus bicolor Peters. Mon. Akad. Berl. 1860, p. 81.
Typhlops bicolor Jan, op, cit. 1804, p. 31, liv. +. pl. iv and v, fig. 3. Bouleng. Cat.
Suakes, Brit. Mus, i, 1893, p. +8 .
Typhlops australis Peters, op. cit. 1865, p. 262, fig. 3. Bouleng. op. cit. p. 35.
Waite, Trans. Roy. Soc. S. Aust. xxi, 1897, p. 26. Werner, Fauna Südwest-
Aust. ii, 1909, p. 250.
Typhlops sp. Lönnberg and Andersson, Vet. Akad. Handl. lii, No. 3, 1913, p. 12. Chart No. 8, and fig. 20.
Nasal cleft to second labial; scales in 22 rows.
Head rounded, with slightly tumid nasals: snout sulb-angular: nostrils inferior, the cleft median, scarcely produced beyond the nostril : rostral large. heart-
shaped. about half the width of the head, reaching to the level of the eyes, the lower part broader than long ; diameter of borly $2 f$ to 49 times in its length.

Lenyth. f(io min.
Type. In the British Museum, from Weestern Australia.

Fig. 20. Head of T. anstralis.
Range. Southern Australia, alsent from the coastal districts of New South Wales and Victoria (8), common in South and 11 estern Australia, and found at Fraser Range and McMinns Creek, Central Australia.

Remarks. Lönnberg and Andersson describe a specimen from Perth, Western Australia, remarking that it resembles T. australis very much, but that "the long tail prohibits the identification with that form." As previously stated in this paper the length of the tail in the Typhlopidae is subject to considerable variation within the limits of a species. In their description "prefrontal" should be read for "preocular."

TYPHLOPS WAITII Boulenger.

Typhlops unguirostris (in part) Bouleng. Cat. Snakes, Brit. Mus. i, 1893. p. 49. Typhlops a'aitii Bouleng. Proc. Linn. Soc. N..S. Wales, (2) ix, 1894. 1. 718, and

Cat. Snakes, Brit. Mus. iii, ISy(5. p. 589.

Not charted.

Nasal cleft to second labial ; scales in 22 rows.
"Nasal cleft proceeding from the second labial (from the first in T. unguirostris) : 22 scales round the body ($2+\mathrm{in}$ T. unyuirostris). Tatl nearly as long as broad."-Boulenger.

Length. 500 mm .
Type. In the British Museum, from N.II. Australia.
Remarks. The original description, above quoted, is insufficient to enable me to publish the further essential characters of the species, or to ascertain in
(8) Peters" record of "Melburn" is doubtless inexact.

What respects it differs from T. australis, with which it is associated in the scheme here adopted, nor can I identify with the description, any specimen il have handled. In order to remedy this deficiency I wrote to Dr. IBonlenger on November 22 last, but I greatly fear that either my letter or his reply has been lost at the result of sinking. by our enemies, of one of the vessels carrying homeward or ontward mails.

TYPHLOPS BATILLUS Waite.

Typhlops batillus Waite. Proc. Linn. Soc. N.S. Wales, (2) ix. 180t. p. 9. pl. i, figs. 1-3. Bouleng. Cat. Snakes, Brit. Mus. iii, ISofl, p. $5^{8} 5$.

Chart No. 9, and fig. 21.
Nasal cleft to second labial ; scales in $2+$ rows.

Fig. 21. Head of T. batillus.
Head sub-acute, much produced; snout acutely rombled; nostrils lateral. close to the rostral to which the cleft is continued, dividing the nasal ; rostral very long, one-third longer than broad, extending to the level of the eyes, widest in front, its width nearly half that of the head, the lower part broader than long: diameter of body 53 times in its length.

Length. 320 mm .
Type. In the Macleay Musemm, Sydney, from Wagga Magga, New South Wales.

Remarks. The type is still the only specimen known, and this is the only spectes having the peculiar shovel-shaped head.

TYPHLOPS LABIALIS sp. nov.

Not charted, fig. 22.
Nasal cleft to second Tabial : scales in 24 rows.
Head very flat, rommled; snout evenly rounded; nostrils lateral, the cleft sub-median, completely dividing the masal: rostral ovate, rather marrow, a little
more than one-third the width of the head, reaching to the level of the eyes, the lower part thistle-shaperl, much longer than broad: preocular very wide, wider than the ocular: labials large, wider than long; diameter of body 35 times in its length.

Colours. In spirits: pale olive abose and yellow below, the two areas sharply defined.

Length. 340 mm .

Fig. 22. Head of T. labialis
Type. In the Western Australian Museum; one specimen, No. R. Gizo, from "Western Australia."

Remarks. Most nearly allied to T. hatillus, but differs in the flat rounded head (see (lefintion p. 7), the shape of the rostral and its relative proportions above and below; the preocular is wider than the ocular: the labials are wider than long; in both characters T. Lahialis differs from all other Australian species.

TYPHLOPS DIVERSUS Waite.

Typhlops diacrsus Waite, Proc. Linn. Soc. N.S. Wales, (2) ix, 1804. p. Io. pl. i, figs. 4-6. Bouleng. Cat. Snakes, Brit. Mus. iii, 1896, p. 58t. Lönnberg and Andersson, V'et. Akarl. Handl. lii, No. 3. 1913, p. 12. Typllops ammodytes Montague, Proc. Zool. Soc. 1914, p. 6 42 , pl. i, figs. S-10.

Chart No. t, and fig. 23.
Nasal cleft to the preocular: scales in 20 rows.
Head rounded; snout evenly rounded; nostrils lateral, far removed from the rostral, the cleft produced beyond the nostril, just on to the upper surface of the head; rostral rather narrow, much longer than broad, one-third the wilth of the head, extending almost to the level of the eyes, lower part as long as broad; diameter of body $+t$ to 67 times in its length.
length. 300 mm .
Type. In the Oueensland Museum, from Morven, Queensland.

Range. Southern Queensland, Northern Territory, Central Australia, Kimberley District, and Nontebello !sland, North-western . Iustralia (T. ammodytes).

Remarks. Four specimens examinel. The type specimen was from Morfen, Central Railway, Queensland; not Mowen, as originally stated. A re-examination shows that the rostral shield is unsymmetrical, though unfortunately not so figured, the bulging, or abnormal sitle, having been duplicated. Examination of further material shows that the actual condition is as now illustrated. Lönnberg and Andersson identified two examples from the interior of the Kimberley district, remarking that they agreed with the description of the type, but

Fig. 23. Head of T. diversus.
that the rostral appeared to be narrower. "Nostril between two nasals" is apparently the only distinguishing feature of T. ammodytes, and, as the author was evidently maware of the description of T. dizersus. I have considered that the specimen oltained should be referred to this species.

In November last I wrote to Mr. Montague in respect to the status of this species. In reply Dr. Hugh K. Anderson informs me that he was killed on active service whilst flying in Palestine. My informant adds that Montague was a delight ful man, and had shown great promise as a naturalist and anthropologist.

TYPHLOPS ENDOTERUS sp. nov.

Chart No. 5. and fig. 24.

Nasal cleft to the preocular; scales in 22 rows.
Head rounded, nasals slightly tumid; snout angular, the lower edge not horizontal; nostrils inferior, the cleft terminating at the nostril, which is close to the rostral ; the latter widest in front, a little wicler than long, forming a triangle with curved sides, not reaching to the level of the eyes, the lower part one-third broader than long; diameter of body 47 times in its length.
l.enyth. 2.35 mm .

Type. In the South Australian Museum. Alelaide, No. R. S8, from Hermannsburg, Central Australia; three specimens.

Fig. 24. Head of T. endoterus.
Remarks. Differs from T. dizersus, its nearest ally, in having 22 in place of 20 rows of scales, the snout angular instead of rounded, the rostral much wider and of different shape, above and below: the nostrils inferior and much nearer to the rostral. and the nasal cleft arrested at the nostril.

BIBLIOGRAPHY of AUSTRALIAN TYPHLOPIDAE.

Schlegel, Abbild, nener oder mollst. bekannt. Imphibien, is 44 .
Duméril et Bibron, Erpét. gén. vi, $184 t$.
Gray, Cat. Lizards, Brit. Mus., $18+5$.
Jan, Iconogr. gén. des Ophidiens, 1860, 1864.
Peters, Monatsb. Hkad. 11 issen. Berlin, $1860,1861,1863,1865.1867,1877,1878$, 1879.

Krefft, Snakes of Atustralia, 1879. (9)
McCoy, Prodromus Zoology, Victoria, 1885.
Boulenger, Annals and Magazine. Nat. Hist.. 1880, 1808, 1014 .
,. Cat. Snakes, Brit. Museum, i. ו8o3. iii. 1896.
.. Proc. Linn. Soc. N.S. Wales. 1894.
.. Proc. Zool. Soc., 1895 .
Ogilloy: Rec. Aust. Mus., ii, 1892.
Whaite. Rec. Just. Mus., ii, iRy3.
.. Proc. Linn. Soc. N.S. Wales, i8ot.
.. Trans. Roy. Soc. S. Aust.. 1897. 1917.
.. Australian Snakes. 18 gR.
Tioettger in Semon, Zool. Forschr. v. isot.
(9) This work is not quoted in the text as the descriptions are copied and the figures are indefinite.

Garman, Bull. Mus Comp. Zool., 1901.
Werner, Fauna Südwest dust. ii, 1909.
Lönnberg and Andersson, Vetens. Akad. Handl. Lii. 1913, 1915.
Montague. Proc, Zool. Soc., ItIt.

Explanation of Plate i.
Typhlops Bituberculatus Peters.
In all the figures the head of the snake is directed towards the left hand, and in fig 2 the reptile is represented in the act of untying the knot into which it had coiled itself (see p. 2).

The striped appearance of the body is due to reflection of light from the highly-polished rows of scales.

[^0]: (1) McCoy, Prod. \%ool. Vict. ii 1885, pl. 103.

[^1]: (2) Boulenger, Cat. Snakes Brit. Mus. i. 1893, p. 4.
 (3) Jan. Icon. Gén.. lis. 9, pl. i. fig. 9.

